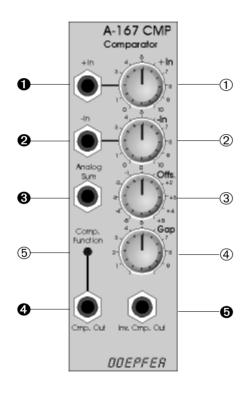


1. Einführung

Beim A-167 (CMP) handelt es sich um ein Modul, das analoge Spannungen miteinander vergleicht (engl. compare) und daraus ein (digitales) Gate-Signal ableitet, dessen Zustand (low / high) davon abhängt, welche der Spannungen größer ist.


Es können sowohl zwei externe Analog-Spannungen verglichen werden (+ln und -ln), wie auch eine externe Analogspannung (+ln oder -ln) mit einem manuell einstellbaren Wert (Offs.-Regler). Für die beiden externen Eingangsspannungen steht je ein Abschwächer zur Verfügung.

Eine **LED** zeigt den aktuellen Gate-Zustand an.

Zusätzlich ist mit dem **Gap-Regler** eine sog. "Hysterese" einstellbar (s. Kap. 3).

Als Ausgänge stehen ein **normales** und ein **invertiertes Gate-Signal** zur Verfügung. Zusätzlich kann auch die **intern gebildete Vergleichsspannung** (s. Kap. 3) an der Buchse "Analog Sum" abgenommen werden. Das Modul kann daher auch als Abschwächer, Subtrahierer und Offset-Generator eingesetzt werden.

2. Übersicht

Bedienkomponenten:

① + IN: Abschwächer für Eingangssignal am

Eingang 0

② - IN: Abschwächer für Eingangssignal am

Eingang 2

3 **Offs.**: Offset-Regler

4 Gap: Regler zu Einstellung der Schalthy-

sterese

⑤ Comp. Function: LED zur Anzeige des erzeugten

Gate-Signals

Ein- / Ausgänge:

0 + In: positiver Eingang

2 - IN: negativer Eingang

3 Analog Sum: Ausgang mit erzeugter interner

Vergleichsspannung

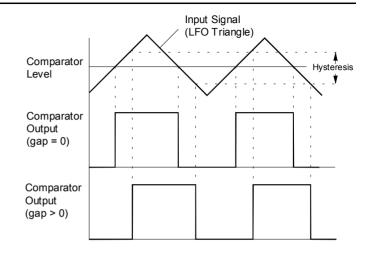
4 Cmp. Out : Gate-Ausgang

10 Inv. Cmp. Out : invertierter Gate-Ausgang

3. Funktionsprinzip

Das Modul bildet intern zunächst die analoge Spannungssumme U_{SUM} :

$$U_{SUM} = a_1 \cdot In^+ - a_2 \cdot In^- + Offset$$


Dabei stehen a₁ und a₂ als Faktor für die manuellen Abschwächer der Eingänge In⁺ und In⁻. Je nachdem, ob die so gebildete Spannung U_{SUM} positiv oder negativ ist, wird der Gate-Ausgang entsprechend gesetzt:

 $U_{SUM} > 0$: Gate = "high" $U_{SUM} \le 0$: Gate = "low".

Die analoge Spannungssumme U_{SUM} steht auch an der Buchse \odot zur Verfügung. Das Modul kann somit auch dazu verwendet werden, um Spannungen abzuschwächen $(a_1,\ a_2)$, voneinander zu subtrahieren und mit einer Offset-Spannung zu versehen.

Mit dem Gap-Regler ⁽⁴⁾ können Sie zusätzlich eine sog. "Hysterese" einstellen. Steht dieser Regler auf Null, so sind Ein- und Ausschaltpegel für das Gate-Signal gleich.

Beim Aufdrehen des Reglers fallen Ein- und Ausschaltpegel immer weiter auseinander und es entsteht eine sog. *Schalthysterese* (s. Abb. 1).

Abb. 1: Wirkung des Gap-Reglers auf das erzeugte Gate-Signal

In diesem Fall muss sich nach dem Umschalten des Gate-Signals die Vergleichsspannung erst um einen gewissen Betrag ändern, bevor sich der Gate-Zustand wieder ändert.

4. Bedienkomponenten

① + In • ② - In

Die Buchsen 1 und 2 sind die **Eingänge** des Komparators. Das Signal, das Sie an Buchse 2 anlegen, wird intern zur Bildung der analogen Spannungssumme U_{SUM} invertiert (vgl. Kap. 3).

3 Offs.

Mit diesem Regler wird zur Differenz der Eingangssignale ein **Offset addiert**, d.h. die Spannungsdifferenz wird um den eingestellten Wert angehoben. Der Offset-Bereich erstreckt sich dabei von ca. -10 V (linker Anschlag) bis +10 V (rechter Anschlag). In der Mittelstellung beträgt der Offset 0 V.

Falls Sie nur einen der Eingänge verwenden, funktioniert der A-167 wie ein **Offset-Generator**; die angehobene Spannung greifen Sie an der Buchse **3** ab (s. Abb. 2 und Kap. 6).

4 Gap

Dieser Regler dient zur Einstellung der **Hysterese** (vgl. Kap. 3).

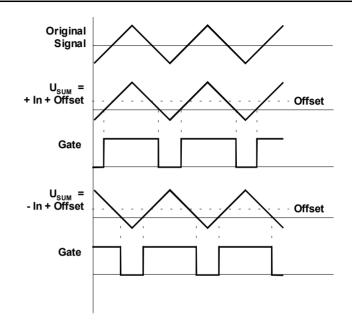


Abb. 2: A-167 als Offset-Generator

⑤ Comp. Function

Diese LED leuchtet, wenn das intern gebildete Summensignal größer als Null ist und somit das Gate-Signal "high" ist.

5. Ein- / Ausgänge

0 + IN

Das hier zugeführte **Eingangssignal** wird - nach Abschwächen mit dem Regler 1 - dem intern gebildeten Signal U_{SLIM} hinzu **addiert**.

2 - IN

Das hier zugeführte **Eingangssignal** wird - nach Abschwächen mit dem Regler @ - vom intern gebildeten Signal U_{SUM} **subtrahiert**.

Analog Sum

An dieser Buchse greifen Sie die intern gebildete **Summenspannung U**SUM ab (s. Kap. 3).

⊕ Cmp. Out • ⊕ Inv. Cmp. Out ■

Der Gate-Ausgang ❹ ist "high", wenn das intern gebildete Signal U_{SUM} größer als 0 ist; in diesem Fall ist der invertierte Gate-Ausgang ூ "low".

6. Anwendungsbeispiele

Die Hauptanwendung des Moduls ist die Erzeugung von Gate-Signalen in Abhängigkeit von analogen Spannungen. Beispielsweise kann je nach momentanem Analogwert eines LFO-Signals (z.B. Dreieckwelle, s. Abb. 1), eines ADSR-Signals oder einer Zufallsspannung ein spannungsgesteuerter Schalter gesteuert werden, der wiederum Steuer- oder Audio-Signale umschaltet.

Weitere Anwendungsmöglichkeiten zeigt die folgende Tabelle. Falls Sie im im Falle des Subtrahierers dem Eingang "- In" ein zuvor invertiertes Signal zuführen, arbeitet der A-167 als Addierer.

Signal an + In	Signal an - In	Offset	Bedeutung bzgl. U _{s∪m} an
•		> 0	Offset-Generator
	•	> 0	Offset-Generator mit invertiertem Eingangssignal
•	•	0	Subtrahierer

Das Modul kann auch dazu verwendet werden, einen **ADSR** in einen **freilaufenden Modus** zu bringen, d.h. der ADSR funktioniert dann ähnlich wie ein LFO, jedoch mit getrennt einstellbarer Anstiegs-/Abfallzeit und exponentiellem Kurvenverlauf.

Beim Patch in Abb. 3 kann der "ADSR-LFO" über den Gate-Eingang des A-140 "gegated" werden (z.B. mit weiterem LFO oder Gate-Impulsen der Tastatur), d.h. der "ADRS-LFO" schwingt nur solange der Gate-Eingang "high" ist. Für die Kurvenform und Frequenz sind beim A-140 Attack, Decay, Sustain und Release, beim A-167 Offset und +In bestimmend. Die Gap-Einstellung beim A-167 ist ohne Belang.

Nur bestimmte Einstellungen führen zu einem "ADSR-LFO"!

Beim Patch in Abb. 4 werden Kurvenform und Frequenz des "ADSR-LFO" von den Parametern Attack und Release beim A-140 sowie Offset, Gap und +In beim A-167 bestimmt. Decay und Release beim A-140 sind ohne Bedeutung.

Auch hier, dass nur bestimmte Einstellungen zu einem ADSR-I FO führen.

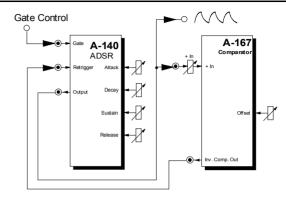


Abb. 3: "ADSR-LFO"

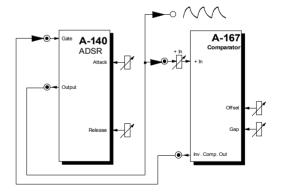


Abb. 4: "ADSR-LFO"